Research and development of novel high-speed CO₂ capture inorganic solid materials from the atmosphere

Zero Emission by 2050

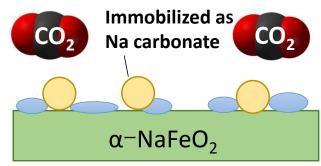
Materials that absorb CO₂ directly from the atmosphere are attracting attention.

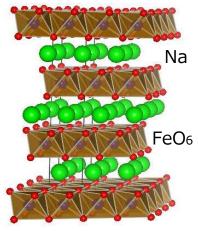
Two important R&D items (1) and (2) by academia that are indispensable for the realization of carbon recycling.

- (1) CO₂ conversion technology (electrolytic synthesis and CO₂ conversion technology)
- (2) Low-concentration CO₂ separation and capture technology (DAC)

Carbon recycling

from NEDO HP


Sodium ferrite NaFeO₂


Safe, inexpensive, and easy-to-use inorganic solid materials were discovered in original research (Seeds of our research).

NaFeO₂ can contribute to direct CO₂ capture (DAC) from the atmosphere as described in (2).

CO₂ absorption mechanism in room temperature and air

Layered structure of a type NaFeO₂

Nano-size water droplets derived from water vapor are adsorbed and transformed into basic water droplets. \rightarrow Realization of room temperature and high-speed absorption of atmospheric CO_2 by inorganic solids (NaFeO₂).