School of Engineering

Electrical and Electronic Systems
Civil and Environmental Engineering
Mechanical Engineering
Information and Computer Sciences
Applied Chemistry
Functional Materials Science
Civil and Environmental Engineering
Mechanical Engineering
何故工学部か

工学部長からのメッセージ

大学に入って勉強することの動機や大学選びはさまざまなでしょう。子供のころから好きだったことを勉強したい人、社会で中心的に活躍したい人、将来の安定的なポジションを得たい人、具体的な目標はないけれど当面大学だけはと考えている人、などなど。でも、別の見方もみてください。いまわれわれが生活している社会は、どのような問題をかかえ、どのような人材を必要としているのでしょうか。この社会が求めている役割を果たすことも、大学で勉強することの動機や大学選びの理由になるのではないかでしょうか。

かつて科学技术は、豊かで便利な生活環境を実現したいという人々の夢に応えるために発展し、多くの夢をかなえてきました。いま、科学技术は人々の夢に先行して発展し、それが社会のあり方そのものを変えるほどまでになっています。その結果、一部では科学技术の発展によってもたらされたものので功と罪が相半ばする状況が出現していることも事実で、その修正も必要です。たとえそうであっても、科学技术発展の重要性は変わることはありません。国の基本政策も科学技术創造立国となっています。工学部とは、このような社会の要請に応える人材を育てる学部です。

工学部に入学したら、何を勉強するのでしょうか。工学部では、数学や、物理、化学、生物などの基礎的学問を応用して、実社会と密接にかかわりのある「もの創り」や「システム創り」を学びます。すなわち、人々が生きていく上で最も基本的な衣・食・住に加えて、日常の生活ではエネルギーや物資の生産、交通システム、ＩＴシステム、医療システムなどが不可欠であり、これらを具体的な形にして社会に提供するための科学技術を学びます。そのために、工学部にはいくつかの専門別学科教育プログラムが準備されています。埼玉大学工学部には、機械工学科、電子情報システム工学科、情報システム工学科、応用化学科、機能材料工学科、建築学科の6学科があり、科学技術の基礎的分野のほとんど全てが網羅されています。各学科でどのようなことを勉強することができるか、各学科の教育を担当する先生がどのような研究をしているかなどについては、この冊子の学科紹介の欄に詳しく書かれています。いずれの学科を卒業しても、幅広い科学技術分野で活躍できます。

ここで、埼玉大学工学部における教育の特徴を少し説明しておきましょう。各学科では、JABEE（日本技術者教育認定機構）で認定された世界標準の質の高い教育プログラムや、情報処理技術者の資格取得につながる教育プログラムを実施しています。さらに、工学部の教育プログラムは大学院へのつながりも重要視しています。埼玉大学の理工系では大学院教育に特に重点をおき、高度専門職業人や世界一流の研究者の養成を図っています。学部の課程を修了して、幅広い分野で活躍することもできますが、大学院に進学すれば、その活躍範囲は、さらに広がります。

埼玉大学工学部は、皆さんを歓迎します。そして皆さんの期待に応えるために教職員一同全力を尽くします。

埼玉大学工学部長　川橋　正昭
目次

■ 学部および大学院の構成・沿革とカリキュラム …… 2
■ 就職・進学状況 ……………………………… 4
■ 学科案内
 ● 機械工学科 ……………………………… 6
 ● 電気電子システム工学科 ………………… 8
 ● 情報システム工学科 …………………… 10
 ● 応用化学科 ……………………………… 12

 ● 機能材料工学科 ………………………… 14
 ● 建設工学科 ……………………………… 16
■ 大学院案内 (理工学研究科) ………………… 18
■ 共同教育研究施設等 ……………………… 20
3つの教育原則：「深い」、「広さ」、「相互関連性」をキーワードとして埼玉大学の教育プログラムは新しく展開しはじめました。工学部は、機械工学、電気電子システム工学、情報システム工学、応用化学、機能材料工学、建設工学という6つの専門教育プログラム（学科）を担っています。どのプログラムも、「教養教育科目」、「工学部基礎科目」、「学科専門科目」、「学際専門科目」、「教育職員免許法等」、「総合技術科目」からなり、それぞれのプログラム独自の学習・教育目標に沿ってカリキュラムが展開されています。

「教養教育科目」の多くは、各学部の「専門教育科目」のうち基礎的な科目を、他学部の学生にも開放する各学問型の科目です。工学部に入学した学生は、他の4つの学部（教養学部、経済学部、教育学部、理学部）が開放する「教養教育科目」から選択して学習します。「教養教育科目」には、外国語系、人文系、社会系、自然系、情報系、体育系の科目が用意されています。

さらに、他の学部や学科が指定する所定の「専門教育科目」を修得することによって、副専攻修了の認定を受けることが出来ます。

「工学部基礎科目」は、数学、物理学、化学、情報、工学基礎実験など、学科専門科目を履修する際に必要となる各学科に共通な基礎科目です。主に1・2年次に履修します。

「学科専門科目」は、各学科の学習・教育目標に沿って用意されたもので、将来、高度技術者として活躍するために必要な科目から成り立ちます。各学科とも、学習内容を徹底的に身につけるために、充実した実験・演習科目を用意しています。4年間を通じて履修します。4年次には、総まとめとして「卒業研究」があります。

「学際専門科目」は、専門分野に関係する他の分野や境界領域の幅広い知識を得るための科目です。最近の学問技術は従来の学問分野を超えて発展していくので、境界領域を学習する必要があります。

「総合技術科目」では、技術者の社会的役割と責任や知的財産に関する知識を修得します。

教育プログラムがJABEEにより認定されました。JABEE（技術者資格教育プログラム）は、大学など高等教育機関で実施されている技術者教育プログラムが社会的要求を満たしているか審査し認定する制度です。2003年度には、4つの教育プログラム（機械工学、電気電子システム工学、応用化学、建設工学）が日本技術者教育認定機構（JABEE）により認定されました。2005年度には、機能材料工学科がJABEE認定を目指して受審しました。

埼玉大学工学部は昭和38年に2学科で発足以来改組・拡充を続けて、現在では学部6学科、大学院理工学研究科博士前期課程（修士）6年次13コースおよび博士後期課程（博士）1年次6コースを擁しています。

工学部沿革

<table>
<thead>
<tr>
<th>学部の設置</th>
<th>機械工学科</th>
<th>電気工学科</th>
<th>機械学科</th>
<th>電気電子工学科</th>
<th>通信工学科</th>
<th>環境化学工学科</th>
<th>建設工学科</th>
<th>情報工学科</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>昭和38年</td>
<td>昭和39年</td>
<td>昭和40年</td>
<td>昭和42年</td>
<td>昭和47年</td>
<td>昭和50年</td>
<td>昭和53年</td>
<td>昭和63年</td>
</tr>
</tbody>
</table>

大学院の設置

工学研究科（修士課程）
機械工学専攻
電気工学専攻
応用化学専攻
建設基礎工学専攻
機械工学第2専攻
電子工学専攻
環境化学工学専攻
建設工学専攻
大学院理工学研究科
博士前期課程
博士後期課程
学部および大学院の構成 (2006年5月現在)

工学部
- 機械工学科 入学定員100名
- 建設工学科 入学定員80名
- 電気電子システム工学科 入学定員80名
- 情報システム工学科 入学定員60名
- 応用化学科 入学定員70名
- 機能材料工学科 入学定員50名

理科部
- 基礎化学科
- 数学科
- 分子生物学科
- 物理学科
- 生体制御学科

大学院 理工学研究科

教育部（教育組織）
博士前期課程（修士）
- 機械科学系専攻
- 機械工学コース
- メカノロボット工学コース
- 環境システム工学系専攻
- 環境社会基盤国際コース
- 環境制御システムコース

博士後期課程（博士）
- 理工学専攻
- 生命科学コース
- 物質科学コース
- 数理電子情報コース
- 人間支援・再生科学コース
- 環境科学・社会基盤コース
- 遠隔先端研究コース

研究部（教育組織）
（工学部担当教員数）
- 生命科学部門
- 物質科学部門（33名）
- 数理電子情報部門（39名）
- 人間支援・再生科学部門（29名）
- 環境科学・社会基盤部門（23名）
- 遠隔先端研究部門

電気電子工学科 機械工学科 電気電子システム工学科
応用化学科 建設工学科 情報システム工学科

機能材料工学科

就職・進学状況（平成15～17年度）

例年卒業生の約半数が大学院に進学しています。就職希望者のほとんどが就職をしています。平成15～17年度の学部卒業生及び博士前期（修士）課程修了者が就職した企業等を各学科ごとに40社程度紹介します。

機械工学科（機械工学専攻）

<table>
<thead>
<tr>
<th>機械工学科</th>
<th>日立製作所</th>
<th>小松製作所</th>
<th>トヨタ自動車</th>
<th>トヨタエアコンエンジニアリング</th>
<th>マツダ</th>
</tr>
</thead>
<tbody>
<tr>
<td>エギー・アンド・ディール</td>
<td>三洋電機</td>
<td>尼コン</td>
<td>日立建機</td>
<td>三菱自動車エンジニアリング</td>
<td>三菱自動車工業</td>
</tr>
<tr>
<td>大塚商会</td>
<td>スズキ</td>
<td>西日本旅客鉄道</td>
<td>三菱重工業</td>
<td>三菱重工業</td>
<td>三菱重工業</td>
</tr>
<tr>
<td>カルソニックカンセイ</td>
<td>大和ハウス工業</td>
<td>日産自動車</td>
<td>富士通ジェネラル</td>
<td>ブリヂストン</td>
<td>矢崎総業</td>
</tr>
<tr>
<td>川崎重工業</td>
<td>ディスコ</td>
<td>日産車体</td>
<td>本田技研工業</td>
<td>ベンタックス</td>
<td>リキエン</td>
</tr>
<tr>
<td>京セラ</td>
<td>デンソー</td>
<td>日本電気</td>
<td>マックス</td>
<td>埼玉県警察</td>
<td>東京消防庁</td>
</tr>
<tr>
<td>グボタ</td>
<td>東武鉄道</td>
<td>バイオニア</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>百田工業</td>
<td>東レ</td>
<td>日立製作所</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

電気電子システム工学科（電気電子システム工学専攻）

<table>
<thead>
<tr>
<th>電気電子システム工学科</th>
<th>日立製作所</th>
<th>日本IBM</th>
<th>富士寫真フィルム</th>
<th>東京電力</th>
</tr>
</thead>
<tbody>
<tr>
<td>東芝</td>
<td>セイコーブソウ</td>
<td>オムロン</td>
<td>松下電工</td>
<td>中部電力</td>
</tr>
<tr>
<td>三菱電機</td>
<td>日立國際電気</td>
<td>サンヨーエレ</td>
<td>トヨタ自動車</td>
<td>アルファンシステムズ</td>
</tr>
<tr>
<td>富士電機ホールディングス</td>
<td>バイオビエオ</td>
<td>村田製作所</td>
<td>本田技研工業</td>
<td>コマツ</td>
</tr>
<tr>
<td>日本電気</td>
<td>新日本電気</td>
<td>大日本印刷</td>
<td>富士重工業</td>
<td>アルパイク</td>
</tr>
<tr>
<td>富士通</td>
<td>ファナック</td>
<td>日本信号</td>
<td>東武鉄道</td>
<td>セコム</td>
</tr>
<tr>
<td>松下電器産業</td>
<td>キャノン</td>
<td>日本アンテナ</td>
<td>JＲ東日本</td>
<td>国家公務員</td>
</tr>
<tr>
<td>シャープ</td>
<td>リコー</td>
<td>KDDI</td>
<td>東京電気</td>
<td>地方公務員</td>
</tr>
</tbody>
</table>

情報システム工学科（情報システム工学専攻）

<table>
<thead>
<tr>
<th>情報システム工学科</th>
<th>日立製作所</th>
<th>東芝</th>
<th>富士ゼロックス</th>
<th>NTT東日本</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTE東日本</td>
<td>SONY</td>
<td>KDDI</td>
<td>松下通信工業</td>
<td>東京電力</td>
</tr>
<tr>
<td>NEC</td>
<td>カシオ</td>
<td>バイオビエオ</td>
<td>トヨタ自動車</td>
<td>アルファシステムズ</td>
</tr>
<tr>
<td>キャノン</td>
<td>リコー</td>
<td>住友電波システム</td>
<td>東芝ITソリューションズ</td>
<td>東芝情報システム</td>
</tr>
<tr>
<td>シャープ</td>
<td>NEC通信システム</td>
<td>NTT情報システムズ</td>
<td>東芝ITソリューションズ</td>
<td>U F J S</td>
</tr>
<tr>
<td>三洋電機</td>
<td>大日本印刷</td>
<td>トヨタ自動車</td>
<td>富士通システムズ&サポート</td>
<td>トランスコスモス</td>
</tr>
<tr>
<td>三菱電機</td>
<td>凸版印刷</td>
<td>コニミ</td>
<td>本田技研</td>
<td>松下システムソリューションズ</td>
</tr>
<tr>
<td>東京NTTデータ通信</td>
<td>ドコモ・システムズ</td>
<td>東京ニュース通信社</td>
<td>データ通信システム</td>
<td>新日鉄ソリューションズ</td>
</tr>
<tr>
<td>東京NTTデータ通信</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注意事項：就職先リストの学科名の右括弧内は、博士前期（修士）課程の専攻名を記載しています。

学部学生の約半数が就職し、あとの半数が大学院へ進学しています。大学院進学者の多くは埼玉大学大学院に進学しておりますが、他大学の大学院に進学する学生もあります。

学部学生の卒業後の進路

<table>
<thead>
<tr>
<th></th>
<th>平成15年度</th>
<th>平成16年度</th>
<th>平成17年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>卒業者数</td>
<td>436</td>
<td>408</td>
<td>402</td>
</tr>
<tr>
<td>就職希望者数</td>
<td>181</td>
<td>174</td>
<td>154</td>
</tr>
<tr>
<td>就職者数</td>
<td>166</td>
<td>157</td>
<td>144</td>
</tr>
<tr>
<td>大学院等進学者数</td>
<td>227</td>
<td>225</td>
<td>236</td>
</tr>
</tbody>
</table>

平成17年度進学先データ

<table>
<thead>
<tr>
<th>進学先</th>
<th>割合</th>
</tr>
</thead>
<tbody>
<tr>
<td>埼玉大学大学院</td>
<td>89%</td>
</tr>
<tr>
<td>その他</td>
<td>11%</td>
</tr>
<tr>
<td>東京工業大学大学院</td>
<td></td>
</tr>
<tr>
<td>東京大学大学院</td>
<td></td>
</tr>
<tr>
<td>東北大学大学院</td>
<td></td>
</tr>
<tr>
<td>横浜国立大学大学院</td>
<td></td>
</tr>
<tr>
<td>九州大学大学院</td>
<td></td>
</tr>
<tr>
<td>千葉大学大学院</td>
<td></td>
</tr>
<tr>
<td>千葉大学大学院</td>
<td></td>
</tr>
<tr>
<td>筑波大学大学院</td>
<td></td>
</tr>
<tr>
<td>東京農工大学大学院</td>
<td></td>
</tr>
</tbody>
</table>
応用化学学科（応用化学専攻）

<table>
<thead>
<tr>
<th>J S R</th>
<th>積水ハウス</th>
<th>東北電力</th>
<th>日本パーキャライジング</th>
<th>三菱樹脂</th>
</tr>
</thead>
<tbody>
<tr>
<td>アキレス</td>
<td>大日精化工業</td>
<td>東洋インキ製造</td>
<td>日立電線</td>
<td>明治製薬</td>
</tr>
<tr>
<td>旭電化工業</td>
<td>大日本インキ化学工業</td>
<td>同和製薬</td>
<td>日立粉末冶金</td>
<td>ヤマハ</td>
</tr>
<tr>
<td>エンプラス</td>
<td>デルモ</td>
<td>日産自動車</td>
<td>フジクラ</td>
<td>理研計器</td>
</tr>
<tr>
<td>関東化成工業</td>
<td>トヨタ自動車</td>
<td>日清紡</td>
<td>富士写真光機</td>
<td>リンテック</td>
</tr>
<tr>
<td>日立製作所</td>
<td>トクヤマ</td>
<td>日東電工</td>
<td>富士重工</td>
<td>埼玉県環境科学国際センター</td>
</tr>
<tr>
<td>理研計器</td>
<td>東芝セラミックス</td>
<td>日本原子力研究所</td>
<td>三井金属鉱業</td>
<td>東京税関</td>
</tr>
<tr>
<td>協同乳業</td>
<td>東ソー</td>
<td>日本酸素</td>
<td>三菱化工機</td>
<td>日本学術振興会</td>
</tr>
<tr>
<td>コスモ石油</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

機能材料工学科（機能材料工学専攻）

コニカ・ミノルタ・ホールディングス	日立ソフトウェアエンジニアリング	旭硝子	バイオニア	埼玉日本電気
ドコモシステムズ	キヤノン	共同印刷	三菱重工業	アキレス
日本新薬	セイコーミスブン	松下電器エンジニアリング	東京電力	日立製作所
菱化システム	東芝デジタルディスプレイ	東海ソフ特	ニチロ	サッポロ飲料
富士通マイクロソリューションズ	ＨＯＹＡ	三菱マテリアル	フジクラ	太陽誘電
ＮＴＴコムウェア	日本製紙	敷島製パン	カシオ計算機	住友スリーエム
ソニーエナジーデバイス	コスモ石油	有機合成薬品	富士フイルム	凸版印刷
TDK				

建設学科（建設工学専攻）

国土交通省関東地方整備局	福岡県庁	川崎市役所	西松建設	宮地鐵工所
国土交通省四国地方整備局	東京都庁	横浜市役所	五洋建設	八千代エンジニアリング
国土交通省国土地理院	東京支局	核燃料サイクル開発機構	竹中工務	日本工務
国家Ⅱ種 会計検査院	静岡県庁	ＪＲ東日本	竹中土木	三井共同建設コンサルタント
経済産業省	沖縄県庁	ＪＲ西日本	竹中工務	三井ホーム
日本道路公団	警視庁（交通技術）	鹿島建設	前田道路	大和ハウス工業
首都高速道路公団	さいたま市役所	大成建設	長大	ミサワホーム西関東
岩手県庁	春日部市役所	大林組	本間組	日鉄建材

学部卒業生の進路状況

平成17年度	236人	72人	18	23	11	42人
平成16年度	225人	76人	20	37	11	39人
平成15年度	227人	70人	20	33	20	66人
機械工学科 Department of Mechanical Engineering

◆次世代技術開発への挑戦◆

人が道具を使うことを覚えてから、長い歴史を経て今日の機械文明が築かれられてきました。その結果、高性能で精密な物が造られ、人々は快適で便利な生活を手に入れることができました。これらは、さらに“物”だけでなく“情報とリテラシー”が豊かな生活を造るキーワードとなって行くでしょう。環境や福祉なども大きなテーマとなっていくでしょう。それに合わせて機械工学科における教育研究内容も多様な変化を遂げています。生活基盤を支える物作りの最新技術開発に加え、未来に向けての新たな展望と夢を託す次世代技術開発への挑戦が続いています。機械工学科は、科学技術の基盤を支える上、この上で新しく変わって行きます。

◆カリキュラム◆

機械工学教育プログラム

機械工学は、あらゆる産業と科学技術の基礎となる総合的学問であるから、本学科卒業生に求められる素養も他分野に渡り、物理学や数学などの基礎的な知識をその根拠におき、その上に機械工学の各分野を築き、最終的には個々の機械を設計・製造する能力を獲得することが求められています。

本学科のカリキュラムは、日本技術者教育認定制度（JABEE）により認定された技術者教育プログラムです。本学科の全ての卒業生は、この認定された技術者教育プログラムの修了生となり、技術士一次試験が免除されます。

教育目的

機械工学教育プログラムでは、次項に示す人材の育成を目指しています。

(1) 機械の設計・製造能力を有するとともに基礎的・専門的な知識を広く応用し得る能力を兼ね備えた高度な知識を有する人材（高度技術者）。

(2) 機械工学の基礎的・専門的な知識を広く応用できるとともに、新しい知識を開拓していく能力のある人材（研究者）。

さらに、社会に対して責任ある対応する能力の育成を目指しています。

教育目標

上に述べた教育目的を達成するため、次のような教育目標を立てその実現を図って行きます。

(A) 工学一般の基礎的な知識の徹底的な理解

(B) 機械工学の基礎的知識の修得とそれを応用・総合する能力

(C) 社会における役割の認識と職業倫理の理解

(D) 表現能力の修得

(E) 課題設定・自己解決能力および独創的な思考力の獲得

◆主な授業科目◆

基礎科目

数学
- 線形代数、数積分学、微分方程式、応用数学

情報処理
- 情報処理概論、プログラミング演習、数値解析

自然科学
- 基礎物理学、基礎化学

実験
- 工学基礎実験

学科専門科目

材料と機械の力学
- 工業力学、材料力学、機械力学、機構学、材料工学

情報制御
- 計測工学、制御工学、メカトロニクス、動システム解析

エネルギーと流れ
- 熱力学、伝熱工学、流体力学

設計と生産
- 機械設計製図、機械設計学、生産加工学

総合と創造
- 機械工学実習、機械設計演習、卒業研究

実験・実習
- 機械工学実験、機械工学実習

技術者倫理
- 生産原論、技術者と社会

◆卒業後の進路◆

毎年40%の卒業生が、より高度な学問と技術の習得を目指し、大学院理工学研究科（博士前期課程）に進んで修士の学位を得ています。さらに高度な学術研究を深めようとすると他の大学の博士後期課程の進んで博士の学位を取得しています。特に卒業生に対しては例年就職希望者の10倍近い求人があり、その就職先は、機械・自動車をはじめ電気、コンピュータ関連の種々のメーカーからの要望がますます増大しています。

◆研究内容◆

◆機械工作◆

ダイヤモンドの平滑化加工、プラスチックの超精密切削、研磨加工における鏡面生成メカニズム、放電加工の加工
機械、超微細穴の鏡面仕上げ、エンドミル切削加工の知的支援
◆ 材料力学
材料の応力解析と強度評価、三次元弾性論、マイクロメカニクス、転位と介物の干涉効果・熟応力問題、分子動力学、疲労、複合・接合材料の強度評価と破壊メカニズム
◆ 設計工学
福祉機器の開発、紙のリサイクル方法の研究、不整地移動機構の開発、軟らかいロボット機構の開発、縮小を用いた多自由度ロボットの運動生成、生物に学ぶ運動機構の開発
◆ 熱学
燃焼波、ドテネーション波の基礎、ドテネーション波の現象、パルスドテネーションエンジン、高エンタルピーフ流れ、ドテネーション駆動型衝撃風洞
◆ 流体力学
生体呼吸循環系の流動と物質循環の解析、呼吸機能補助装置の開発、細胞培養バイオリアクターの流れ解析、音響流の基礎研究と応用、音響治細菌症コンプレッサの開発、マイクロ流れの可視化計測、マイクロ衝撃波の計測と応用、マイクロ風車の開発、人・生物の流れ解析
◆ 材料工学
材料損傷・劣化過程の超音波評価、はんだ接合過程の超音波評価、超音波の干渉計測、生体用超音波センサーの開発、強誘電センサーの開発、AE法による植物の診断
◆ 機械学
静態設計（防振、防音、快適化）、耐震設計（ダンパー）、音響設計（固体波動の発生と音の分析、楽器）、生活科学（人生の動的感覚、感性、スポーツ工学）、身体・精神反応科学
◆ 機械要素
すべり軸受、気体軸受、空気バネ、ダンパー、動磁振器などの特性解析と最適設計、摩擦、摩耗、疲れ付きに関する研究
◆ 制御工学
制御工学、メカトロニクス、磁気浮上、磁気軸受、無重力環境下質量測定、アクティブ除振装置、振動制御、静電応用、超音波モータ、皮膚感覚ディスプレイ
◆ 機械システム
非線形性を有する系で発生する自然現象のマニピュレーションの解明、回転体、非線形振動系の同期現象、機械システムの振動・運動の制御
◆ ヒューマンインタフェイス
知的CAD／CAMシステムの開発、パーソナルアリティ技術を用いた熟練技能伝承システムの開発、組立／分解を考慮した組立体の最適設計、ヒューマンサポート機器と知的ロボットの開発および最適制御
◆ 計測工学
福祉・医療・看護機器の開発、生体材料の生体適合性の評価、生体材料の摩耗特性、体内の金属腐食メカニズム、近赤外光による血管位置の計測、骨折のバイオメカニクス、関節軟骨のトライポロジー
◆ 生産環境科学
光放射圧を利用した微細物体の操作技術および計測技術、レーザ応用微細加工技術、超精密研削、加工プロセスシミュレーション、マルチエージェントシミュレーション
◆ 環境センシング
新規な光学的計測手法に関する研究（光波干渉法における動的位相解析法、統計干渉法による超精度ひずみ解析法、3次の無位置計測、光コヒーレントモグラフィー、色および分光画像解析）とM E M Sの動作診断、光学的計測手法の環境センシングへの応用

3自由度アクティブ除振装置
柔軟な関節を持つ足機構の製作
超音波顯微鏡による材料内部の観察
知的多足歩行ロボット
電気電子システム工学科 Department of Electrical and Electronic Systems

◆社会との関連◆
電気・電子・情報通信技術は、単に産業界のみならず日常生活においても欠くことのできないものとなっており、その進歩は、目を見張るものがあります。特に、エレクトロニクス分野の技術革新は、コンピュータ、超LSI、光ファイバ、新素材を含むハードウェアを提供し、これらを有機的に結びつける情報通信ならびにソフトウェア技術の進歩と融合して、高度な情報化社会を実現してきました。さらに、メカトロニクスなどの他の高度技術を組合わせ、社会により大きな恩恵をもたらそうとしています。
このような社会的背景を踏まえ、電気電子システム工学科では、時代のニーズに応えるべく、コンピュータの基礎はもとより、LSI回路設計、情報通信基礎論、人工知能などの教育研究、電子デバイス等の新しい半導体素子の開発および物性研究、エネルギーの発生、発送および制御と高度利用、さらにこれらを統合したシステム創成等に関する教育研究に携わっております。優秀な人材の育成と研究を通じて社会への貢献に努めています。

◆カリキュラム◆
大学4年間の教育では、電気・電子・情報通信技術分野の専門基礎知識を修得するとともに、課題に対応できる能力が習得できるカリキュラムを用意しています。このカリキュラムにより、大学院における研究、あるいは産業界における様々な技術革新への対応に必要な専門基礎知識と基礎技術を付与することを教育の目標としています。本学科の教育プログラムは、2003年度に日本技術者育成認定機構（JABEE）の認定を取得しました。
具体的には、2年次までは、電気電子工学の基礎知識を体系的、総合的に修得するための講義、演習、実験等を設けています。これらの科目を通じて工学技術者としての幅広い知識と倫理観を得ることができます。本学科では、多様な入学者がカリキュラムに対応できるように、入門のための講義と動機付けのための科目を設けています。
3年次以降では、電気・電子・情報通信技術に係わる専門基礎知識、基礎技術を修得するため、専門基礎科目と専門科目を設けています。専門科目は、1、エネルギー・制御系、2．材料・デバイス系、3．回路システム・情報通信系、4．システム創成学科系、に分類されています。各人の進路や興味によって系を選択し、その系の科目を主として履修して専門的な知識を習得することができます（コース制）。3年次までは、学年受験制を敷き、学生の指導に努めています。
4年次では、講義の他に卒業研究があり、学生は研究室に配属されて1年間研究を行います。これにより学問的、技術的修得のため、特定の題目について教員の指導の下に学生が自主的に研究を行うものであれば、他の授業科目とは異なり、自らの創意と工夫によって研究を推進させるものです。
また、インターンシップにより産業界における課題対応の実際が可能です。この他、社会人・国際人としての能力を涵養する科目も用意されています。

◆研究内容◆
電気電子システム工学科では、エネルギー・制御システム、通信・回路システム、電子材料・デバイスの3つの研究分野について教育研究を行っています。それぞれの分野の主な研究テーマは以下の通りです。

◆エネルギー・制御システム
電力工学：真空中的高電圧絶縁工学、電子・イオン用を用いた表面分析・処理、パルスパワー、核融合
電気機器工学：電気機器、メカトロニクス、バーベ・レーキトロニクス、システム制御理論、ニューロファジー等による知識処理・学習制御

主な授業科目
- 微分積分学Ⅰ・Ⅱ
- 線形代数Ⅰ
- 数学演習Ⅰ・Ⅱ
- 情報処理演習
- 計算機概論
- 物理学概論
- 科学技術英語
- 電気電子工学概論
- 基礎電気回路・演習
- 電気回路
- 電気機器工学Ⅰ・Ⅱ・Ⅲ・Ⅳ
- 基礎電子回路
- インターネット
- 電気電子実験Ⅰ・Ⅱ・Ⅲ・Ⅳ
- 電気エネルギー基礎工学
- 自動制御
- ポリテクス
- 基礎電子物性
- 電子デバイス
- 光エレクトロニクス
- 電気法規・電波法規
- 論理回路
- 計算機システム
- マイクロ波工学
- システム創成学概論
- 科学技術とシステム創成
- 6ビジネスと情報システム
- 卒業研究
通信・回路システム
電子回路工学：医用電子回路、マイクロ電子デバイス、カスタムLSIの設計及び設計自動化、電子写真
電気物理学：電磁波回路、マイクロ波誘電体共振器およびフィルタ、マイクロ波超伝導、
雷放電プラズマ診断と電磁界解析
高周波工学：電磁波工学、特にアンテナ系とそのサブシステム、また新通信方式を含む情報通信工学

電子材料・デバイス
電子計測工学：光放射パワー計測（紫外、赤外、分光放射）、センサー材料、センサーシステム、光デバイス
電子制御工学：超伝導ディジタルデバイス、高性能超伝導センサー、微細加工技術
光エレクトロニクス：光エレクトロニクス
半導体材料・デバイス・評価

卒業後進路
卒業後の進路は、就職と進学がおよそ半々です。就職関係では、電力、電気機器、通信、コンピュータ、情報処理、エレクトロニクス、電気・電子材料等の分野を中心に、機械、精密機械、化学、鉄鋼、電機、自動車、非鉄金属、建設などいろいろな分野に進んでいます。
進学関係では、大学院博士前期課程（修士課程）への進学があります。電気電子系に関する修士課程の主な専攻は、環境システム工学系専攻、数理電子情報学専攻です。さらに、最先端で高度の教育研究を希望する者は、大学院博士後期課程へ進学する道が開かれています。

資格
電気主任技術者、高等学校教諭1種（工業）、技術士（一次試験免除）、電気通信主任技術者（一部試験科目免除）、無線従事者

携帯電話のカメラで撮った画面上に目的地を矢印で案内

金属薄膜蒸着装置

分子線エピタキシャル法による化合物半導体の作成
「A・D・C・インパルス高電圧試験装置」
電子ビーム微細加工装置

ミリ波循環体の測定装置

接触ロボットのニューロ・ファジィ制御システム

広帯域分光システム
情報システム工学科

◆情報システム工学科概要◆

現代は情報化社会といえ、情報システム工学は社会生活のあらゆる分野において極めて重要な技術となっています。本学科はこのような社会的要求に応えるために昭和63年に情報工学科として設置され、平成7年には情報システム工学科として拡充されました。

本学科は、これらの情報技術を発展させる中核となる技術者を養成するために、時流の変化に対適応できる真の基礎学力を、幅広い素養に基づいた豊かな応用力を持ちつつ教育を行っています。

また、新技術のデータベース・知識処理技術、生体の仕組みを取り入れたコンピューティング技術、デジタル信号処理、知的センサリング、情報通信ネットワーク、精密計測技術、イメージサイエンス、高速計算技術など最先端の研究を行うとともに、21世紀の情報化社会を切り開く研究者の育成も行っています。

◆教育研究設備◆

情報システム工学科の研究・教育には、最新のワークステーション、パーソナルコンピュータを高速なローカルエリアネットワークで統合した分散型コンピュータシステムを使用します。共同利用の大型計算機を使用したスーパーコンピューティングの研究も可能です。これらの計算機システムはすべてインターネットに接続されており、ホームページの開設などによる情報発信も可能です。コンピュータ実習では1人1台の端末を使用した効率の良い高度な教育を実施しています。端末室は常時開放されており学生の自主自習のためにも利用可能です。たとえば、ある学生グループは端末室で練習を積み、国際大学対抗プログラミングコンテストにおいて、国内予選を勝ち進みアジア地区予選への進出、4位入賞などの優秀な成績をあげています。これら現有設備の多くは、平成19年3月の更新を予定しています。

また、ロボットをはじめとする自力分散システム、クリーンルームなどの高度な情報素子実験施設を備え、活発な研究を行っています。

◆カリキュラム◆

情報系に必須となる科目で授業と演習を有機的にリンクし、将来のいかなる技術革新にも柔軟に対応し積極的に貢献できるように基礎教育を徹底します。その導入として、リテラシーを含めた情報系／数学系入門科目を設定し、大学教育へのスムーズな移行を促しています。これらの基礎を土台として、幅広い素養を習得しそれぞれを工学全般、産業・経済・社会基盤等へ応用するための計算機科学、システム工学、知能情報、情報通信工学、および、人間に関わり人間と共存するシステムの構築に関する科目を履修します。四年生になると各人が研究室に所属して主体的な研究活動としての卒業研究を行います。一研究室あたり0～5名の少人数教育を実施し、きめ細やかな研究指導の中で、より深い専門知識と総合的な能力を身につけることができます。

◆研究内容◆

本学科は基礎から応用、ソフトウェアからハードウェアに至るまで、多岐にわたる広い研究範囲をカバーしています。企業との共同研究や研究結果の論文報告、国際会議での発表も活発に行われ、独創性に溢れる優れた研究成果を生み出しています。

◆シミュレーションと画像処理◆

画像処理や科学シミュレーションを行うにはより大量のデータをより速く処理する技術が必要になります。マルチプロセッシング、リアルタイム処理などの研究を行うと共にスーパーコンピュータを用いて原子の世界をシミュレーションする技術の研究を行っています。また数値だけではなく論理的な問題を処理する技術の研究も行っています。

主な授業科目

- 情報数学入門
- プログラミング入門
- 基本情報技術概論
- 離散数学
- 応用線形代数／応用解析学
- 数理論理学
- 情報倫理
- 計算機システム構成原理
- 情報素子工学
- データ構造とアルゴリズム
- 論理回路
- プログラミング言語
- 画像処理工学
- 数値解析
- 音声情報処理
- 分子情報工学
- 計算論
- 生体情報工学
- データベースシステム
- 人工知能
- パターン情報処理
- 情報セキュリティ工学
- データインタラクティブ
- 情報通信工学
- ヒューマンコンピュータインタラクション
- プレゼンテーション技術
- 卒業研究
ています。

◆通信技術とコミュニケーション
携帯電話やインターネットなどで活躍する通信技術について、より品質の高い安定した通信が可能になるような通信・信号処理技術の研究を行っています。また、ヒトとキバイの橋渡しをする音声認識と合成の技術の研究を行い、理想的な情報通信システムを実現するための幅広い研究を行っています。

◆知識処理とデータベース
インターネットの発展とともに知識を共有／管理する技術も重要となりました。ネットワークを最大限活用したデータベースや、道路ナビゲーションをさらに発展させる地理情報システムなどの研究を行っています。さらに、プログラムを自動的に生成する技術としてプログラミングの知識をデータベース化することで高品質なソフトウェアを効率よく開発する方法についての研究を行っています。また、既存の知識から新しい知識を推論する発見的知識処理方法などの研究を行っています。

◆知能とシステム
人間と同じような視覚、味覚、嗅覚、聴覚をキバイで実現するためのハードウェアとその信号を認識して情報化するソフトウェアの研究を行っています。それらの情報からロボットが周囲の状況を自ら判断して行動を選択するシステムや人間の活動を支援するロボットなどの研究を行っています。またコンピュータがつくり出す知能によって人間の複雑な感性を再現したり、人間の意志を汲み取って理解するインタフェースの研究を行っています。さらに、これらの研究の基礎となる数理工学の研究も行っています。

◆卒業後の進路
毎年卒業生に対して多くの求人があり、大企業でのソフトウェアや製品の開発、あるいは個性的なソフトウェアハウスなど幅広い範囲に就職しています。また、学部卒業後さらに大学院へ進学することで、より専門的な教育を受け、個人の能力を一段と向上させてから社会で活躍することもできます。本学科の学生のおおよそ40％が第一線の研究者を目指して2年間の博士前期課程へ進学しています。さらに世界に通用する研究活動をするために毎年数名の学生が博士後期課程へと進学しています。
応用化学科では、材料化学と環境化学を軸とした広範な化学関連分野において、製品の開発から廃棄するまで環境・安全に配慮しうる知識・能力を有した高度化学技術者および研究者の育成を教育目的としています。この目的を達成するため、次の教育目標を設定しています。
(A) 国際的な視野と豊かな社会性、人間性を備え、環境に関与した材料の開発を専門とする化学技術者の育成。
(B) 自主的かつ継続的な学習・研究能力を備えた化学技術者の育成。
(C) 数学・自然科学の基礎知識と情報処理技術・基礎化学工学を含む工学基礎知識を備えた化学技術者の育成。
(D) 実験・研究を通じて、問題解決能力を備えた化学技術者の育成。
(E) 環境に関与した材料の開発に必要な化学の専門知識を有し、課題を把握して、与えられた制約条件の下でその解決を図り、有用な研究成果を導く能力を備えた化学技術者の育成。

カリキュラム

本学科のカリキュラムは、日本技術者教育認定機構(JABEE)により「国際水準の高度技術者育成プログラム」として制定されました。カリキュラムの要点・特色は次のようになります。
1. 技術者の社会的責任や技術倫理を学ぶため、「科学技術者論」を、地球的視点から多面的に物事を考える能力を身につけられるため、「環境化学基礎」をそれぞれ必修科目としています。
2. 「基本情報処理技術者」の資格を取得できるように情報教育を充実させています。
3. 自己学習の時間の確保を図るため、学期ごとの履修単位数を24単位以下に制限(Cap制)しており、自らが選択した科目を自主的に選択し学びます。
4. 学生による教員の授業評価を学期ごとに行い、たえず授業を改善しています。学生の成績は従来の標準点・年次・可・不可を数値化(GPA制)して厳密に評価しております。
5. 「応用化学実験Ⅰ～Ⅲ」では各専門分野の基盤技術の修得をめざし、「応用化学実験Ⅳ」では研究室に一定期間所属し、課題解決型の学生実験を行います。卒業研究を必修科目とする。全学生に先端の学術研究に携わる機会を与えています。
6. 「応用化学実験Ⅳ」は、卒業研究の輪講を通じた外国論文の紹介や研究発表により、国際コミュニケーション能力・プレゼンテーション能力の育成を努めております。
7. 授業内容の理解を徹底させるため、専門科目の基礎段階では、講義に連動した演習を設けています。

主な授業科目

<table>
<thead>
<tr>
<th>年次</th>
<th>科目内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1年次</td>
<td>微積分、基礎物理化学、材料化学基礎、情報基礎、線形代数、物理化学、有機化学、環境化学基礎、工学基礎実験</td>
</tr>
<tr>
<td>2年次</td>
<td>応用数学、物理学、化学熱力学、プロセス工学、有機反応化学、分析化学、情報処理、化学反応速度論、無機化学、応用化学実験</td>
</tr>
<tr>
<td>3年次</td>
<td>流体力学、確率統計学、プログラミング言語、数値解析、有機分子工学、有機材料化学、環境化学、地球環境制御工学、科学技術者論、科学技術英語、触媒化学、環境分析、機器分析、無機材料化学、プログラミング演習</td>
</tr>
<tr>
<td>4年次</td>
<td>現代工業化学論、環境アセスメント、応用化学輪講、インターンシップ、卒業研究</td>
</tr>
</tbody>
</table>

応用化学科棟の風景

教室 学生実験室 ラウンジ
研究内容

本学科は、無機材料化学、分子プロセス工学、環境設計制御の3大講座において、環境に優しい新素材やその製造プロセスの創出を目指す研究とともに環境そのものを対象とする研究を行っています。

無機材料化学講座 化学反応や物理現象を基盤にして、機能性セラミックスや薄膜、超微粒子の新しい合成法を研究し、超耐熱材料・触媒・化学センサ・電極などの特性や機能を解析するとともに、さらに高機能性材料の開発を目指しています。これらの材料はクリーンエネルギーやケミカルリサイクル、グリーンケミストリー、環境浄化などさまざまな分野への応用が期待されます。

分子プロセス工学講座 プラスチック、繊維、医薬品、染・顔料などの機能性有機材料の開発とその生産に関する研究を行っています。液晶、光情報素子などの電子材料の開発も盛んで、その一部は製品として応用されています。また、コンピュータを用いた分子レベルの材料設計、生体類似機能物質の合成、二酸化炭素を削減したり廃棄物を最少にするようなプロセスの設計も行っています。

環境設計制御講座 環境汚染物質の直接的あるいは環境中での変質後の影響を評価し、そのリスクを最少化していく戦略の構築を目指し、汚染物質の大気/水/土壌にまたがる挙動の解明、超高感度計測方法の開発、分解除去方法の開発、環境影響の外部評価などの研究を行っています。研究対象は、酸性雨や地球温暖化の原因物質、有害重金属類、エアロゾル、未規制の有害化学物質などです。

卒業後の進路

卒業生は、各種の製造業をはじめとするあらゆる産業分野で活躍しています。さらに研究活動を行いたい学生のためには、大学院理工学研究科（修士課程）が設置されています。最近の修士課程への進学率は約4割に達し、さらに増加の傾向があります。また、自分の研究を突き詰めたい学生のために、博士後期課程（博士課程）も設置されており、研究者としての道も開けています。

本学科のより詳しい情報については応用化学科概要Vol.36またはホームページをご覧下さい。
機能材料工学科の研究分野

◆材料って何？◆

物質の特徴を生かして人間生活に役立つように利用したときその物質は材料と呼ばれます。近代的なビルディングを例にとると多量の鉄鋼、セメント、ガラス、プラスチックなどが使われています。これらの材料は建築物、自動車などの形を構成する材料であることから構造材料と呼ばれてています。

◆機能材料ってどんなもの？◆

高速なコンピュータ、増大するエネルギー需要、宇宙開発、高齢化社会の到来、環境問題などは現代科学技術に解決を求められている大きな問題ですが、これらの問題解決の鍵は新しい機能材料の開発にあると言われています。

新しい半導体、太陽電池、磁性体、高温超伝導体、超耐熱性素材、化学・バイオセンサ、合理的に設計された医薬、人工蛋白質、その他多くの分野で研究が進められています。つまり機能材料は単に形を構成するだけでなく材料その自体が高度な「機能」を示す物の総称です。

◆ひろがる機能材料の世界◆

では、材料に望みの機能を持たせるにはどのようにしたら良いのでしょうか？それは、物質を原子・分子のレベルで設計し、操作することにより実現します。

現在、原子・分子の配列・組み合わせを精密に制御して高品質機能材料を実現するという新しいアプローチが少しずつ可能となりつつあります。自然の法則に則って能動的に働きかして新しい高機能な材料を創出する…これが今、まさに広がりつつある機能材料工学の世界なのです。

機能材料工学科は物理・化学を基礎として新しい機能材料を創り出す研究を進めると同時に、今後ますます重要性を増す情報・エレクトロニクス、合成化学、バイオテクノロジー関連分野等の開発を通じて未開拓領域で活躍できる研究者・技術者の育成を目的として平成4年に設立されました。

新しい機能材料の研究・開発には既存の学問分野の中だけではなく解決できない問題が山積していますが、逆に私たちはこの様々な領域の中から真に新しい機能をもつ材料とデバイスが創り出されており確信しています。

物理・化学・生物・情報などの境界領域に旺盛な好奇心を持ち、物質の謎に挑戦する未知の分野を開拓したいという皆さんを歓迎します。

機能材料工学科の研究分野

磁気ストレージデバイス
スピンエレクトロニクス材料
電磁両立性（E M C）デバイス
半導体材料
超格子半導体レザ
オブジェクトエレクトロニクス材料
水素吸収材料

太陽電池
有機ELデバイス
光センサ
バイオセンサ
バイオチップ
分子コンピュータ

糖鎖材料
糖鎖・有機ケイ素複合材料
有機電子材料
酵素モデル醸体
人工光合成
分子ナノマシン
人工分子進化
情報高分子

量子物性工学分野
生体分子機能分野
◆カリキュラム◆

本学科では国際的に認知されている活躍する技術者の養成に対する教育プログラムを作成し実施しています。この教育プログラムは平成17年度に日本技術者教育認定機構(JABEE)「工学（融合・新領域）関連分野」の審査を受け、認定を取得しました。本カリキュラムでは1年次から3年次まで、基礎科目と専門科目および物理と化学をバランス良くかつ段階的に学習できるよう配慮されています。

<table>
<thead>
<tr>
<th>1年</th>
<th>教養教育科目</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>機能材料基礎演習Ⅰ・Ⅱ</td>
</tr>
<tr>
<td></td>
<td>機能材料工学概論</td>
</tr>
<tr>
<td></td>
<td>科学技術作文</td>
</tr>
<tr>
<td></td>
<td>微分積分学Ⅰ・Ⅱ</td>
</tr>
<tr>
<td></td>
<td>基礎物理学Ⅰ・Ⅱ</td>
</tr>
<tr>
<td></td>
<td>物理化学Ⅰ・Ⅱ</td>
</tr>
<tr>
<td></td>
<td>基礎化学Ⅰ・Ⅱ・Ⅲ</td>
</tr>
</tbody>
</table>

2年	分子生物学
	基礎量子力学
	電磁気学
	機能材料工学実験Ⅰ
	機能材料工学実験Ⅱ
	機能材料工学実験Ⅲ
	技術倫理

3年	電子機能材料
	高機能材料
	磁性材料
	半導体物理
	結晶物理学
	高分子科学
	薄膜・表面工学
	光物性工学
	分子生物工学Ⅰ・Ⅱ
	構造解析
	特別講義
	科学技術と知的財産

◆学生指導◆

1年入学時に担任教員（3名）が決まります。担任は学習上の相談に応じ、工場見学、進学、就職などの世話をします。4年次では学記のいずれかの分野について卒業研究（必修）を行います。卒業研究は指導教員とマンツーマンの形で進められます。

◆卒業後の進路◆

卒業生の過半数は大学院理工学研究科博士前期課程物理機能系専攻機能材料工学コースへ進学しています。さらに博士後期課程に進学し、学問の最先端を研究する学生も少なくありません。就職先は、「材料を制するものが技術を制する」との産業界の言葉からもわかるように、製造業を中心に多方面に及んでいます。
建設工学科

建設工学は、地球の自然環境を理解し、また人間社会の要請を踏まえて、道路、橋、港、空港、ダム、河川など、文明生活を支える基盤施設を建設し整備するために必要な学問・技術の体系です。

現代社会は、環境問題や都市問題などさまざまな課題に直面しています。これらを解決しながら社会基盤施設を充実させていくために、計画学から解析設計、建設施工、維持管理に至るまでを系統的に考えることができる総合的な視野を持つ建設技術者が求められています。

組織構成

筑波大学工学部建築工学科は、土木工学の体系に地球科学の領域を加え、さらに環境工学の分野を充実させた組織構成をとっています。所属する教員は、地盤システム工学、計画設計システム工学、環境システム工学の3つの大学講座に分けられ、基礎科目と専門科目の教育を分担しています。

各講座は研究分野に応じて研究室に分かれ、独自のテーマに即して調査、実験、解析などの研究活動を行っています。

カリキュラム

建設工学は、極めて広範囲にわたる学問です。本学科のカリキュラムには、数学、基礎物理・化学、力学、情報処理等を基礎にして、以下の授業科目に示すような多くの専門科目が設けられています。基礎から専門科目にわたる広範な知識を理解するために、講義と演習・実験・実習等の体系的なカリキュラムにし、学生が効率的に知識を習得できるようにしています。また、ユニークな少人数制（1クラス10名程度）の「テーマ研究（I）（II）（III）」、卒業研究を通して、課題発見・分析・解決能力、自己学習能力、発表能力等を育成するとともに、国際的視野を涵養します。さらに、建設工学概論、建設史・建設行政、インフラシップなどの科目を学ぶことで、専門基礎知識に加えて、社会に対する深い理解と技術者倫理を身に付けることができます。本学科の教育プログラムは2003年度より、日本技術者教育認定機関（JABEE）の認定プログラムとなっています。

主な授業科目

<table>
<thead>
<tr>
<th>年次</th>
<th>1年次</th>
<th>2年次</th>
<th>3年次</th>
<th>4年次</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>工業力学、建設工学概要、地域・都市計画、工学基礎実験、建設工学概論、テーマ研究Ⅰ、情報基礎</td>
<td>建設材料工学、構造力学Ⅰ・Ⅱ、地盤力学Ⅰ・Ⅱ、コンクリート工学Ⅰ、水理学Ⅰ・Ⅱ、交通システム、地学、地図科学、建設史・建設行政、情報処理、数値解析学、計画数理</td>
<td>建設工学実験、景観設計演習、水環境学、岩盤力学、耐震・地震工学、測量学Ⅰ、テーマ研究Ⅱ、建設振動工学、建設工学演習、環境保全マネジメント、建設プロジェクト、建設技術者と社会、インターンシップ</td>
<td>テーマ研究Ⅲ、卒業研究、測量学Ⅱ、建築学概論、科学技術英語、リモートセンシング</td>
</tr>
</tbody>
</table>
トに参画しているダイナミックな卒業生もいます。なお、JABEE認定により、2003年度卒業生から国家資格である技術士の第一次試験が免除されることになりました。

◆教育分野◆

本学科は、以下の3つの講座によって構成されています。地盤システム工学講座は、土質工学、岩盤工学、振動工学の3研究室で構成され、地圏科学研究センターの協力を得つつ地盤システム工学の教育科目を担当します。地圏とは土や岩石で構成される地球の地殻の部分のことです。地の特性に対する理解を深め、安全な構造物を建設する技術を開発することをめざしています。

計画設計システム工学講座は、建設構造工学、設計・計画工学、建設材料工学の3研究室からなり、計画設計システム工学の教育科目を受け持っています。公共建設事業の調査・計画から施設や構造物の設計・解析までカバーする幅広いかつ広い分野です。

環境システム工学講座は、水理工学、基盤構造工学、都市環境工学の3研究室によって構成され、環境システム工学の教育科目を担当しています。地球環境問題に建設工学の立場からアプローチし、環境保全技術の開発をめざしています。

◆学生指導◆

2名の担当教員が、入学から卒業までの間、学習・生活相談、成績不振者との面談指導、および進路指導などを、継続的に行います。その他、学生と教員との意見交換会や、本学科卒業生を招いての進路相談会なども行われます。
大学院理工学研究科 Graduate School of Science and Engineering

◆理工学研究科の組織◆

2006年4月から、本研究科は、高度の専門性とともに幅広い関連分野の知識を有する高度専門職業人および世界的レベルの研究者養成についての社会的ニーズに応えるために、大学院を重点化しました。これまで理学部、工学部に所属していた教員は理工学研究科研究部に所属し、理工学における近接分野の連携あるいは融合による教育を実現しています。

◆博士前期課程◆

博士前期課程は理工融合体制に組み換え、6専攻およびその下の13のコースからなっています。学部専門教育との一貫性を重視し、学部教育をベースに各コースの専門分野を学ぶとともに、広い関連知識を幅広く習得しうる仕組になっている。修士論文をまとめ、課程を修了することにより、修士（理学）または修士（工学）の学位を取得できます。

◆博士後期課程◆

博士後期課程は理工学専攻とその下の6のコースから構成されており、専門分野の深奥を究めるとともに、さらに学際的・理工融合的な研究ができる教育体制になっています。また、連携先端研究コースでは、埼玉大学重点研究テーマ「分子環境工学」と「構成的情報生物学」の兼任教員や連携先研究機関（理化学研究所、産業技術総合研究所、埼玉県環境科学国際センター）からの客員教員が指導する5つの領域があります。博士論文をまとめ、課程を修了すると、博士（学術）、博士（理学）、博士（工学）のいずれかの学位を習得できます。
http://www.saitama-u.ac.jp/rikogaku/
共同教育研究施設等

Educational and Research Facilities

近年科学技術の高度化および多様化に伴い、工学部における授業、実験および研究を進めるに当たって、専攻学科の実験設備では対応できない大型装置等が必要となります。そこで、学内には図書館、総合情報処理センター、分析センター、地域共同研究センター、地図科学研究センターおよび塵液処理施設が整備されていて、学生諸君が講義に関連する調査をしたり、実験および研究を進めていく上で大いに助けることとなります。

◆図書館◆

大学における研究・教育に必要な情報を提供するための活動を行っています。
収集資料：図書・雑誌の他、CD-ROM・DVD・ビデオ、レーザーディスク等を備えています。SciFinder Scholar等のデータベースや、ScienceDirect等の電子ジャーナルも導入しています。
サービス：（1）レファレンス：文献の探し方や図書館の利用法の相談に応じます。② ILL：文献のコピーや図書を他大学から取り寄せます。③ OPAC：蔵書の検索がインターネットを通じておこなえます。
パソコン利用：備え付けのパソコンからインターネットの利用やレポートの作成ができます。また、自分のノートパソコンを持ち込んで利用できるように、無線LAN及び情報コンセントを設置してあります。
開館時間：9時から、授業開始中の平日は21時30分まで、土曜・日曜・祝日は17時まで開館しています。

◆情報メディア基盤センター◆

情報メディア基盤センターは、埼玉大学の教育研究における情報処理技術の基盤(IT基盤)を提供しています。当センターの情報処理システムは、学内基幹ネットワーク、メールやウェブなどの各種基幹サーバーパソコン実習室などのが情報関連教育支援設備、高度な3次元グラフィックスによる可視化や各種のシミュレーションのための高速計算を提供する研究支援設備から成っている。
キャンパス内のインターネット利用については、（1）当センターの実習室、共通教育棟の実習室、図書館等に設置されているパソコン、または（2）キャンパス内の多くの場所にある構内インターネット・アクセス・ポイントに無線LANなどで接続した自分のパソコンの何れかで可能である（構内インターネット・アクセス・ポイント利用のための申請が必要。詳細は当センターのホームページを参照のこと）。
なお、これら現在設備の多くは、平成10年3月の更新を予定している。

◆科学分析支援センター◆

「生命科学分析分野」と「器機能分析分野」の2分野によって構成されています。前者では放射性同位元素や実験動物などを用いたバイオ関連の実験を、後者では高性能の分析装置を用いた分子構造や物質特性の解析を支援し、基礎
教育・研究が効果的に行われるように装置・施設の運用を行っています。

◆地域共同研究センター◆

本センターは、大学と地域社会との連携・協力の窓口として、平成6年に設立されました。施設内には、実験室、グラウンルーム、セミナー室及び各種測定装置、分析機器が設置され、民間企業等と本学教官との間で行われる共同研究に利用されています。平成12年には、埼玉大学地域共同研究センター産学交流協議会設立されました。また、大宮ソニックシティカレッジでは、定期的にミニフォーラムを開催し、センターの客員教員もしくは専任教員が技術相談を行っており、これらの活動を通じて産学間の連携を強力に推進しています。

台湾集々地震における橋の被害

◆廃液処理施設◆

大学における教育・研究活動等に伴って、有害物質を含む廃液や廃油、廃溶媒類など多種多様な有害廃棄物が発生する。これらを有害廃棄物によって大学周辺の環境及び住民の健康を損なうことのないように無害化処理を行っている。また、廃棄物や廃液を生きた教材として、環境保全や廃棄物処理の意義など環境教育及び安全教育を行っている。さらに、ICP発光分析装置等の最新の分析機器が設置されており、実験及び研究等に多く利用されている。

現代社会は、地震災害や大気汚染・廃棄物処分など、地層問題の解決を強く求められています。本センターは、これらの問題を現状し、地球環境と調和・共生した未来社会を構築するため、2001年4月に全学の教育・研究施設として設立されました。主な研究分野は2つあります。1つは、地震など突発的な災害に強い大都市システムを研究する地震防災分野であり、他の1つは、大地・地下水汚染の防止と浄化、高度危険廃棄物の安全な深層処分などの研究を行う地層環境分野です。また、センターの研究では国際性を重視し、例えば、発展途上国の地震災害軽減や、高度危険廃棄物の安全な深層処分技術開発のための国際共同研究に積極的に参加し、また东南亚地震などの大地・地下水汚染防止研究を行っています。このような研究組織は我が国唯一であり、学生・大学院生諸君は本センターで地域人と人間社会との関係を総合的に研究することができます。